Purpose
To read the coefficients of a matrix polynomial
dp-1 dp
P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s .
Specification
SUBROUTINE UD01BD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
C .. Scalar Arguments ..
INTEGER DP, INFO, LDP1, LDP2, MP, NP, NIN
C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LDP2,*)
Arguments
Input/Output Parameters
MP (input) INTEGER
The number of rows of the matrix polynomial P(s).
MP >= 1.
NP (input) INTEGER
The number of columns of the matrix polynomial P(s).
NP >= 1.
DP (input) INTEGER
The degree of the matrix polynomial P(s). DP >= 0.
NIN (input) INTEGER
The input channel from which the elements of P(s) are
read. NIN >= 0.
P (output) DOUBLE PRECISION array, dimension
(LDP1,LDP2,DP+1)
The leading MP-by-NP-by-(DP+1) part of this array contains
the coefficients of the matrix polynomial P(s).
Specifically, P(i,j,k) contains the coefficient of
s**(k-1) of the polynomial which is the (i,j)-th element
of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and
k = 1,2,...,DP+1.
LDP1 INTEGER
The leading dimension of array P. LDP1 >= MP.
LDP2 INTEGER
The second dimension of array P. LDP2 >= NP.
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
The coefficients P(i), i = 0, ..., DP, which are MP-by-NP matrices, are read from the input file NIN row by row. Each P(i) must be preceded by a text line. This text line can be used to indicate the coefficient matrices.References
None.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* UD01BD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MPMAX, NPMAX, DPMAX
PARAMETER ( MPMAX = 10, NPMAX = 10, DPMAX = 5 )
INTEGER LDP1, LDP2
PARAMETER ( LDP1 = MPMAX, LDP2 = NPMAX )
* .. Local Scalars ..
INTEGER DP, INFO, L, MP, NP
* .. Local Arrays ..
DOUBLE PRECISION P(LDP1,LDP2,DPMAX)
* .. External Subroutines ..
EXTERNAL UD01BD, UD01ND
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) MP, NP, DP
IF ( MP.LE.0 .OR. MP.GT.MPMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) MP
ELSE IF ( NP.LE.0 .OR. NP.GT.NPMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) NP
ELSE IF ( DP.LT.0 .OR. DP.GT.DPMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) DP
ELSE
* Read the coefficients of the matrix polynomial P(s).
CALL UD01BD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, 99996 ) MP, NP, DP
* Write the coefficients of the matrix polynomial P(s).
L = 5
CALL UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, ' P',
$ INFO )
IF ( INFO.NE.0 )
$ WRITE ( NOUT, FMT = 99997 ) INFO
ELSE
WRITE ( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' UD01BD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from UD01BD = ',I2)
99997 FORMAT (' INFO on exit from UD01ND = ',I2)
99996 FORMAT (' MP =', I2, 2X, ' NP =', I2, 3X, 'DP =', I2)
99995 FORMAT (/' NP is out of range.',/' NP = ',I5)
99994 FORMAT (/' MP is out of range.',/' MP = ',I5)
99993 FORMAT (/' DP is out of range.',/' DP = ',I5)
END
Program Data
UD01BD EXAMPLE PROGRAM DATA 4 3 2 P0 1.0D-00 0.0D-00 0.0D-00 0.0D-00 2.0D-00 4.0D-00 0.0D-00 4.0D-00 8.0D-00 0.0D-00 6.0D-00 1.2D+01 P1 0.0D-00 1.0D-00 2.0D-00 1.0D-00 0.0D-00 0.0D-00 2.0D-00 0.0D-00 0.0D-00 3.0D-00 0.0D-00 0.0D-00 P2 1.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00Program Results
UD01BD EXAMPLE PROGRAM RESULTS
MP = 4 NP = 3 DP = 2
P( 0) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.2000000D+01 0.4000000D+01
3 0.0000000D+00 0.4000000D+01 0.8000000D+01
4 0.0000000D+00 0.6000000D+01 0.1200000D+02
P( 1) ( 4X 3)
1 2 3
1 0.0000000D+00 0.1000000D+01 0.2000000D+01
2 0.1000000D+01 0.0000000D+00 0.0000000D+00
3 0.2000000D+01 0.0000000D+00 0.0000000D+00
4 0.3000000D+01 0.0000000D+00 0.0000000D+00
P( 2) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.0000000D+00 0.0000000D+00
3 0.0000000D+00 0.0000000D+00 0.0000000D+00
4 0.0000000D+00 0.0000000D+00 0.0000000D+00