Purpose
To balance the matrices of the system pencil
S = ( A B ) - lambda ( E 0 ) := Q - lambda Z,
( C 0 ) ( 0 0 )
corresponding to the descriptor triple (A-lambda E,B,C),
by balancing. This involves diagonal similarity transformations
(Dl*A*Dr - lambda Dl*E*Dr, Dl*B, C*Dr) applied to the system
(A-lambda E,B,C) to make the rows and columns of system pencil
matrices
diag(Dl,I) * S * diag(Dr,I)
as close in norm as possible. Balancing may reduce the 1-norms
of the matrices of the system pencil S.
The balancing can be performed optionally on the following
particular system pencils
S = A-lambda E,
S = ( A-lambda E B ), or
S = ( A-lambda E ).
( C )
Specification
SUBROUTINE TG01AD( JOB, L, N, M, P, THRESH, A, LDA, E, LDE,
$ B, LDB, C, LDC, LSCALE, RSCALE, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, L, LDA, LDB, LDC, LDE, M, N, P
DOUBLE PRECISION THRESH
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ DWORK( * ), E( LDE, * ), LSCALE( * ),
$ RSCALE( * )
Arguments
Mode Parameters
JOB CHARACTER*1
Indicates which matrices are involved in balancing, as
follows:
= 'A': All matrices are involved in balancing;
= 'B': B, A and E matrices are involved in balancing;
= 'C': C, A and E matrices are involved in balancing;
= 'N': B and C matrices are not involved in balancing.
Input/Output Parameters
L (input) INTEGER
The number of rows of matrices A, B, and E. L >= 0.
N (input) INTEGER
The number of columns of matrices A, E, and C. N >= 0.
M (input) INTEGER
The number of columns of matrix B. M >= 0.
P (input) INTEGER
The number of rows of matrix C. P >= 0.
THRESH (input) DOUBLE PRECISION
Threshold value for magnitude of elements:
elements with magnitude less than or equal to
THRESH are ignored for balancing. THRESH >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading L-by-N part of this array must
contain the state dynamics matrix A.
On exit, the leading L-by-N part of this array contains
the balanced matrix Dl*A*Dr.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,L).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading L-by-N part of this array must
contain the descriptor matrix E.
On exit, the leading L-by-N part of this array contains
the balanced matrix Dl*E*Dr.
LDE INTEGER
The leading dimension of array E. LDE >= MAX(1,L).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading L-by-M part of this array must
contain the input/state matrix B.
On exit, if M > 0, the leading L-by-M part of this array
contains the balanced matrix Dl*B.
The array B is not referenced if M = 0.
LDB INTEGER
The leading dimension of array B.
LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the state/output matrix C.
On exit, if P > 0, the leading P-by-N part of this array
contains the balanced matrix C*Dr.
The array C is not referenced if P = 0.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
LSCALE (output) DOUBLE PRECISION array, dimension (L)
The scaling factors applied to S from left. If Dl(j) is
the scaling factor applied to row j, then
SCALE(j) = Dl(j), for j = 1,...,L.
RSCALE (output) DOUBLE PRECISION array, dimension (N)
The scaling factors applied to S from right. If Dr(j) is
the scaling factor applied to column j, then
SCALE(j) = Dr(j), for j = 1,...,N.
Workspace
DWORK DOUBLE PRECISION array, dimension (3*(L+N))Error Indicator
INFO INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
Balancing consists of applying a diagonal similarity
transformation
-1
diag(Dl,I) * S * diag(Dr,I)
to make the 1-norms of each row of the first L rows of S and its
corresponding N columns nearly equal.
Information about the diagonal matrices Dl and Dr are returned in
the vectors LSCALE and RSCALE, respectively.
References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
Ostrouchov, S., and Sorensen, D.
LAPACK Users' Guide: Second Edition.
SIAM, Philadelphia, 1995.
[2] R.C. Ward, R. C.
Balancing the generalized eigenvalue problem.
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
Numerical Aspects
None.Further Comments
NoneExample
Program Text
* TG01AD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER LMAX, NMAX, MMAX, PMAX
PARAMETER ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDE
PARAMETER ( LDA = LMAX, LDB = LMAX, LDC = PMAX,
$ LDE = LMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( 1, 3*(LMAX+NMAX ) ) )
* .. Local Scalars ..
CHARACTER*1 JOBS
INTEGER I, INFO, J, L, M, N, P
DOUBLE PRECISION ABCNRM, ENORM, SABCNM, SENORM, THRESH
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ DWORK(LDWORK), E(LDE,NMAX), LSCALE(LMAX),
$ RSCALE(NMAX)
* .. External Functions ..
DOUBLE PRECISION DLANGE
EXTERNAL DLANGE
* .. External Subroutines ..
EXTERNAL TG01AD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) L, N, M, P, JOBS, THRESH
IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) L
ELSE
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99987 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
* Compute norms before scaling
ABCNRM = MAX( DLANGE( '1', L, N, A, LDA, DWORK ),
$ DLANGE( '1', L, M, B, LDB, DWORK ),
$ DLANGE( '1', P, N, C, LDC, DWORK ) )
ENORM = DLANGE( '1', L, N, E, LDE, DWORK )
* Find the transformed descriptor system
* (A-lambda E,B,C).
CALL TG01AD( JOBS, L, N, M, P, THRESH, A, LDA, E, LDE,
$ B, LDB, C, LDC, LSCALE, RSCALE, DWORK,
$ INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
SABCNM = MAX( DLANGE( '1', L, N, A, LDA, DWORK ),
$ DLANGE( '1', L, M, B, LDB, DWORK ),
$ DLANGE( '1', P, N, C, LDC, DWORK ) )
SENORM = DLANGE( '1', L, N, E, LDE, DWORK )
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 30 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
30 CONTINUE
WRITE ( NOUT, FMT = 99992 )
DO 40 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
40 CONTINUE
WRITE ( NOUT, FMT = 99991 )
WRITE ( NOUT, FMT = 99995 ) ( LSCALE(I), I = 1,L )
WRITE ( NOUT, FMT = 99990 )
WRITE ( NOUT, FMT = 99995 ) ( RSCALE(J), J = 1,N )
WRITE ( NOUT, FMT = 99994 )
$ ABCNRM, SABCNM, ENORM, SENORM
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TG01AD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01AD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Dl*A*Dr is ')
99996 FORMAT (/' The transformed descriptor matrix Dl*E*Dr is ')
99995 FORMAT (20(1X,F9.4))
99994 FORMAT (/' Norm of [ A B; C 0] =', 1PD10.3/
$ ' Norm of scaled [ A B; C 0] =', 1PD10.3/
$ ' Norm of E =', 1PD10.3/
$ ' Norm of scaled E =', 1PD10.3)
99993 FORMAT (/' The transformed input/state matrix Dl*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Dr is ')
99991 FORMAT (/' The diagonal of left scaling matrix Dl is ')
99990 FORMAT (/' The diagonal of right scaling matrix Dr is ')
99989 FORMAT (/' L is out of range.',/' L = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
END
Program Data
TG01AD EXAMPLE PROGRAM DATA
4 4 2 2 A 0.0
-1 0 0 0.003
0 0 0.1000 0.02
100 10 0 0.4
0 0 0 0.0
1 0.2 0 0.0
0 1 0 0.01
300 90 6 0.3
0 0 20 0.0
10 0
0 0
0 1000
10000 10000
-0.1 0.0 0.001 0.0
0.0 0.01 -0.001 0.0001
Program Results
TG01AD EXAMPLE PROGRAM RESULTS
The transformed state dynamics matrix Dl*A*Dr is
-1.0000 0.0000 0.0000 0.3000
0.0000 0.0000 1.0000 2.0000
1.0000 0.1000 0.0000 0.4000
0.0000 0.0000 0.0000 0.0000
The transformed descriptor matrix Dl*E*Dr is
1.0000 0.2000 0.0000 0.0000
0.0000 1.0000 0.0000 1.0000
3.0000 0.9000 0.6000 0.3000
0.0000 0.0000 0.2000 0.0000
The transformed input/state matrix Dl*B is
100.0000 0.0000
0.0000 0.0000
0.0000 100.0000
100.0000 100.0000
The transformed state/output matrix C*Dr is
-0.0100 0.0000 0.0010 0.0000
0.0000 0.0010 -0.0010 0.0010
The diagonal of left scaling matrix Dl is
10.0000 10.0000 0.1000 0.0100
The diagonal of right scaling matrix Dr is
0.1000 0.1000 1.0000 10.0000
Norm of [ A B; C 0] = 1.100D+04
Norm of scaled [ A B; C 0] = 2.000D+02
Norm of E = 3.010D+02
Norm of scaled E = 4.000D+00